quarta-feira, 25 de janeiro de 2017

INTEGRAL DUPLA - INTRODUÇÃO

INTEGRAL DUPLA - O QUE É UMA INTEGRAL DUPLA?

Em Cálculo III um dos assuntos mais abordados é sem dúvida a integral dupla. E é sobre a teoria que envolve a integral dupla que vamos abordar.



  • O que é uma integral dupla?
  • Qual seu significado geométrico?
  • Como calcular uma integral dupla?

O que é a integral dupla: 

A integral dupla é semelhante a integral comum, na qual vimos em calculo I, se lembra que na integral comum tínhamos sempre uma função a ser integrada, e essa função dependia somente de uma unica variável, y = f(x) , ou seja, a função depende exclusivamente de x
E denotamos a integral de f como: \int_{a}^{b} f(x)dx
Agora na integral dupla teremos algo semelhante, porém a nossa função a ser integrada pode ser uma função de duas variáveis. E a integral dupla da função z = f(x,y)  é denotada: \int_{c}^{d}   \int_{a}^{b} f(x,y)dxdy
A primeira coisa a se atentar é que, a função z=f(x,y) é uma função que depende de x,y diferentemente da integral comum.
Outra novidade é o dxdy. Na integral comum aparecia o dx, esse símbolo só significa que estamos integrando em relação a variável x. O dxdy simboliza que iremos realizar uma integração em relação a x e um um integração em relação a y.

Qual o significado geométrico da integral dupla?

Na integral comum o significado geométrico era muito simples. 
A integral \displaystyle\int_{2}^{6} f(x)dx  simboliza a área abaixo da função f(x) :

Área abaixo da função f(x)

Já a integral dupla pode ser interpretada como o VOLUME abaixo da superfície gerada pela função f(x,y)
Ou seja, a integral: \displaystyle\int_{c}^{d}   \int_{a}^{b} f(x,y)dxdy

A integral dupla calcula o volume abaixo da superfície

Como calcular uma integral dupla?

A integração da integral dupla é simples, nada complexo para quem tem um bom entendimento de DERIVADAS PARCIAIS. Uma coisa na qual devemos nos atentar é a ORDEM DE INTEGRAÇÃO, lembra que na integral dupla temos aquele elemento dxdy, que como foi dito acima simboliza a integração em x e a integração em y. Por isso devemos ter cuidado, pois existe uma ordem correta de integração, se você não respeitar a ordem seu resultado vai estar errado!
Calma que vamos ver qual a ordem correta.

Podemos visualizar a integral dupla como duas integrais comuns:
\color{blue}{\int_{c}^{d}} \color{red}{\int_{a}^{b}}f(x,y)\color{red}{dx}\color{blue}{dy}
Ou seja, o que precisamos fazer é calcular a integral de dentro e depois a integral de fora. Porém a integral de dentro é um integral em dx por isso vamos integrar em ralação a x. E depois calculamos a integral em relação a y.
Vamos fazer um exemplo na prática. f(x,y) = 4xy + 2y
\color{blue}{\int} \color{red}{\int}(4xy+y)\color{red}{dx}\color{blue}{dy}
A primeira coisa que temos que fazer é integrar em relação a x, para realizar essa integral é so imaginar y como uma constante ( igual nas derivadas parciais ).
daí ficamos com \color{blue}{\int} (2x^2y + 2yx)\color{blue}{dy}
 Agora é só integrar em relação a y  e fazendo x como constante.
\color{blue}{\int} (2x^2y + 2yx)\color{blue}{dy} = x^2y^2 + yx^2
Observe que eu não tive o cuidado de colocar as constantes de integração. Mas se você tiver os limites de integração é só proceder como nesse exemplo :)

Espero que tenha ficado claro :D





Related Posts:

0 comentários:

Postar um comentário

Guilherme Bocutti. Tecnologia do Blogger.

Postagem em destaque

Como calcular a distância da terra a lua?

Como calcular a distância da Terra a lua? Essa é uma pergunta muito interessante e você irá se surpreender ao saber que é possível dete...

Fale Conosco

Nome

E-mail *

Mensagem *

Popular